本文目录
有哪些让人笑出眼泪的姓名什么是算命和大数据实践的关系《大数据》读后感字以前有很多人为自己孩子取名字的时候并不会想太多,都很随意,他们不会在孩子名字上花很多功夫。但是有一些也是十分的凑巧取的名字让人听了十分的搞笑,开始自己不会发现,但是长大了就会让人哈哈大笑。那么,在你所经历的人生中有听过哪些让人笑出眼泪的姓名呢?
搞笑名字一——支付宝。我们知道支付宝它是一个APP软件,是专门用于支付买东西支付的时候所需要的软件。那么,有的人叫支付宝,当在走在街上的时候说正要付钱的时候说用支付宝,那么如果是叫支付宝的人在旁边肯定就会“嗯”一下,那么这样的场面也是让人笑得停不下来。
搞笑名字二——好牛逼。这个典型的名字真的是特别特别的搞笑,笑到人的肚子疼。作为一个词来说,好牛逼在日常生活中也是一种夸赞人的方式,说明那个人特别的厉害。那么父母给他取个好牛逼的名字意思是在以后希望它能够非常厉害,那刚好相反不是闹笑话了吗?
搞笑名字三——秦浏橄。家长给孩子取这样一个名字,在很多人听到这个名字而不知道这个字是怎么写的时候,都会以为是家里的牲畜所得到一种流感。这种流感会让人避而远之,是一种十分不好的兆头,这家长是不是太有才了!
这些搞笑的名字在现实中有时候真的会给他们自身带来一种压力,所以说还是希望在取名字的时候多下点功夫!
什么是算命和大数据实践的关系?读到这里,你会有一个问题:如果算命真的是基于大数据的积累来检索预测,那么算命师怎么能实现这么快的检索速度呢?
其实还有一个技术要点,算命的人在算命的时候一般轮流捏手指,45度角望天。
你觉得他们在干什么?
手指捏是用传感器键盘输入的命令!看看天空,自然需要云计算资源!大数据和云计算这两个上榜的算命师似乎被视为理所当然……(开玩笑的)
什么是算命和大数据实践的关系?测量和记录一起产生了数据,这是数字化的最早基础。因此,我们目前的重点不仅仅是把文本转换成数据,把位置转换成数据,把聊天转换成数据,等等,而是把世界上的一切都数字化。我们应该更加重视数字化。
毕竟,对我们来说,保留大量的数字并不比你收集书籍更有意义。它们只有在你阅读的时候才有用。就像现在正面临困境的滴滴,从家庭到公司,从娱乐到休闲,从学校到实习公司,收集了大量的用户数据……如果单独与如此多的数据是没有价值的,这些数字,现在只会降低电路智能推荐系统,帮助我们选择最合适的方式,如果公司能与政府分享这些数据,帮助政府缓解城市拥堵,为了有效的建议来解决城市交通拥堵,估计可以缓和紧张局面。
数字大数据的帮助下,我们不会看到世界一系列的自然或社会现象,我们会发现世界本质上是由信息,我们更多的数据的价值生成的值,而不是一堆数据存储在过去为你画花,告诉我这将生成大量的数据值。
现在很多公司,包括一些政府买了很多硬盘,“保存大量的数据,对于投资者来说,人们提倡大数据的价值,你不是演员,不是设计的情节,简单,简单的做事方式,有一个事物的外观,无论多少数据,第一次玩的价值,不要让噪音的数据只是数字阶段,超过了硬盘保存年轻有什么意思?
算命和大数据实践的关系是什么?大数据工程师竟然在做这样的事,如果算命真的是基于大数据的积累来进行检索来做预测,算命师怎么能实现检索速度这么快,你能处理好吗?如果您还担心自己入门不顺利,也可以点击本站的其他文章进行学习。
《大数据》读后感2000字
如今,我们正处于一个大数据时代,有时候数据给了我们有力的证明。以下是、《大数据》读后感2000字,欢迎阅览!
《大数据》读后感2000字【1】这两年,大数据,云计算的思想就像小苹果的音乐一样,传的到处都是,每一个公司不管是互联网公司还是传统企业,都标榜自己的大数据。
1、实体物联网与虚拟物联网
曾几何时,物联网的概念闹得风生水起,庞大的物联网能够让世间大量的物体,都能够被检测并联网,包括了人、车、房等一切能够被联网的物体,这些物体都能够以种方式被感知他的存在,并对其信息记录在案,以供使用。在若干年前,这还是一种看似遥不可及的事物,要对每个物体都贴上一个所谓的RFID的标签,显得不切实际。如今,随着手机的大量使用,人类本身也被加入了物联网中。为什么要物联网?是为了获取什么?要知道物联网获取了什么,只需要看看在一个物体在没有加入物联网与加入物联网之后,我们多出了哪些东西便能够知晓。那么,很明显,我们需要通过某种方式来获取该物体的信息,这种存储下来的信息,就叫做——数据。
物联网产生的数据是实体的物品之间的信息,而现在的互联网上,占最大数据量的,是虚拟物品,或者叫做网络虚拟物品。由于网络物体是直接寄生于网络,具有能够方便的接入网络的特征,因此,在获取实体物体信息还有一定难度的时期,占有很大优势。但今后实体的物联网产生的数据量一定会不断增加,或许,能够超越网络上的物物相连数据量。
网络的广泛使用,使得信息的产生于传遍变得容易,每个接入网络的人都以一定的角色存在,都是网络的信息的创造者。对于所产生的信息而言,每个接入网络的人又身兼多角,对于网络服务商,他是网络使用者的角色;对于门户网站而言,他是使用的用户;对于社交网站而言,我们则扮演一个虚拟或者真实的网络角色;对于浏览器而言,他是一系列的浏览网页、一些列鼠标动作的角色…不同的角色取决于对方需要从我们的行为中获取哪些信息。将网络上各种角色看成是虚拟的物体,那么,这种虚拟物体构成的虚拟物联网便产生了巨大的数据量。经历过一直以来缺乏信息获取渠道的日子,现在,既然信息获取变得如此容易,那么,必然迎来信息量暴增的时代——大数据时代。
2、思维的转变
技术的改变,使得我们思维方式也要随之发生变化。在过去的小数据时代,由于获取信息、存储信息、整理信息都是费时费力的活,我们只能精打细算,捉摸着如何以最小的代价、最快的方式来收集尽可能准确的信息。之所以会有抽样统计的方式,是受技术所限,无法获得全体的样本,或者就算获取了也无法在合理的时间内进行处理。由于信息获取代价大,使得我们不得不在获取信息前,就把一切都想清楚,才能够着手处理。这就像在计算机出现的初期,使用纸袋来编码的时期,一次出错的代价太大,所以人们不得不在输入前将代码验证过无数遍之后才敢输入到机器中。而现代计算机让编码的效率大大提升,这才使得人们能够创造出更加强大的软件。人们不需要在着手编码前就对代码过分深思熟虑,因为机器会帮助你解决一些问题。因此,那些担心由于获取数据太方便,进行数据处理、分析代价太小而使人们变得懒惰或者做事欠考虑的家伙,真是杞人忧天。历史上,技术的进步都会提升人类的生产力,但却没有让人们变得懒惰,因为与此同时,欲望也随之增长。人类只会变得更伟大。
因此,大数据时代,这个数据更加全面的时代,我们可以涉足一些之前由于缺乏数据而无法涉及的领域,例如——预测。这是一个令人兴奋的领域,但其实这个领域早有苗头,而且大家都是受益者。我们平时使用的输入法中的智能联想功能,能够根据我们之前输入的文字,来预测我们接下来有可能输入的文字,以节省我们的输入时间。这种算法里,没有人工智能,而只有人们大量的输入习惯的统计,通过大量数据的统计来预测,是一个统计学的方式而非加入了特有的规则或者逻辑。这便引出了在大数据时代,对于信息处理的一种重要方式,基于统计,得出不同个体的相关关系,却无需了解其因果关系,而我们则受益于相关关系。这种方式,看似有些投机取巧,却能够在关键时刻令我们处于优势地位。我们已经习惯了先知道某些事物的因果逻辑,继而推断出相应的结果。但世间总会有一些令人无法用合理的逻辑进行解释的现象,若通过大数据分析,我们能够跳过逻辑阶段直接享用某些一些结果(沃尔玛的啤酒加尿布案例),岂不乐哉。当然,严密的逻辑永远是值得尊敬的。
3、互联网的黏性
在经历过了从广度上通过新花样来吸引用户的时代,由于技术的提高,一个创业者在一个新的领域开辟的东西很容易被其他人所复制。在这个时候,深度很重要。特别是购物网站、微薄、门户网站这类信息量大的网站,越是了解一个用户,优势就越大。所以,在技术已经不是最重要的因素的时代,如何增加用户的黏性、忠诚度便是首要的。通过用户之前的信息,来推测用户的喜好,给用户推荐相应的信息或物品。当你越了解一个用户,而别人却不了解时,这个用户就越离不开你。微薄中有他的`智能排序功能、新闻门户中有“今日头条”应用,各类购物网站有他的推荐算法(但这个纯粹为了增加消费而非增加用户黏性),都能够根据用户之前的浏览、偏好来给出相应的推荐。这些的基础,都是拥有用户的行为记录,否则,都无从谈起。
各行各业,都在疯狂的抓紧时机,获取数据,拥有足量的数据,那一切就变得皆有可能。
《大数据》读后感2000字【2】凡是过去,皆为序曲是大数据业者最喜欢引用的语句。大数据是现在的潮流,大数据时代被认为是了解大数据的初级读物。近期连续读了两遍,第二遍是为了写这篇读后感,总体而言,值得一看,但细节方面却需要讨论了。
维基百科对大数据的解释:Big data,或称巨量数据、海量数据、大资料,指的是所涉及的数据量规模巨大到无法通过人工,在合理时间内达到截取、管理、处理、并整理成为人类所能解读的信息。
有人说现在是读图时代,除去小说、心灵鸡汤以外,现在的畅销书基本都有图片,这本书是一个特例
首先尝试解析一下作者的三大观点,这三大观点是大数据业者很喜欢引用的三句话:
1不是随机样本,而是全体数据
我想所有人都能意识到对全体数据的分析优于对随机样本的分析,但在现实中我们经常拿不到全体数据:一是数据的收集方法,每一种方法都有适用的范围,不太可能包罗万象;二是数据分析的角度,战斗机只能统计到飞回来的飞机上的弹孔,而坠毁的则无法统计,沃德通过分析飞回来的战斗机得出来最易导致坠毁的薄弱点;三是处理能力跟不上,就像以前的天气预报太离谱是因为来不及算那些数据。“采样分析是信息缺乏时代和信息流通受限制的模拟数据时代的产物”,作者显然只关注了一部分原因。
从语言的理解上看,什么是全体数据,究竟是“我们需要的所有数据”,还是“我们能收集到的所有数据”,书中的很多商业案例中,处理的只是“我们能收集到的所有数据”,或者说是“我们认为的全体数据”。人对自然的认识总是有限的,存在主义认为世界没有终极的目标。书中举例“Farecast使用了每一条航线整整一年的价格数据来进行预测”,而“整整一年”就是一个采样,或者是“我们需要的所有数据”。
从历史的角度看,国外的托勒密建亚历山大图书馆唯一的目的是“收集全世界的书”,实现“世界知识总汇”的梦想,国内的乾隆汇编四库全书,每个收集的过程都有主观因素在里面,而他们当时都认为可以收集全部的书籍,到最后,我们也没有得到那个梦中的全体。
2不是精确性,而是混杂性
既然我们过去总是在抽样,那本身就是在一个置信水平下,有明确的容错度或者是偏差值。人类永远知道我们是在精确性受限的条件下工作。同时,作者本身也承认“错误并不是大数据固有的特性,而是一个亟需我们去处理的现实问题,并且有可能长期存在”。那大数据的特征究竟是精确性还是混杂性?
由此衍生出一个问题,大数据的品质如何控制:一、本身就不要求精确,但是不精确到何种程度是需要定义的,否则就乱套了,换个角度,如果定义了容错度,那符合条件的都是精确的(或者说我这句话还是停留在小数据时代?这里的逻辑我没有理顺)。就像品质管理大师克劳斯比提出过零缺陷理论,我一直觉得是一个伪命题,缺陷是一定存在的,就看如何界定了;二、大量非结构化数据的处理,譬如说对新闻的量化、情感的分析,目前对非SQL的应用还有巨大的进步空间。
“一个东西要出故障,不会是瞬间的,而是慢慢地出问题的”。“通过找出一个关联物并监控它,我们就能预测未来”。这句话当然是很认同,但不意味着我们可以放弃精确性,只是说我们需要重新定义精确度。之于项目管理行业,如果一个项目出了严重的问题,我们相信,肯定是很多因素和过程环节中出了问题,我们也失去了很多次挽救的机会。而我们一味的容忍混杂性的话,结果显然是不能接受的。
3不是因果关系,而是相关关系
这是本书对大数据理论的最大的贡献,也是最受争议的地方。连译者都有点看不下去了。
相关关系我实在是太熟了,打小就学的算命就是典型的“不是因果关系,而是相关关系”。算命其实是对趋向性的总结,在给定条件下,告诉你需要远离什么,接近什么,但不会告诉你为什么那样做。
我们很多时候都在说科学,然而,什么是科学,没有人能讲清楚。我对科学的认识是:一、有一个明确的范围;二、在这个范围内树立一个强制正确的公理;三、有明确的推演过程;四可以复制。科学的霸道体现在把一切不符合这四个条件的事物都斥为伪科学、封建迷信,而把自己的错误都用不符合前两条来否决。从这个定义来看,大数据不符合科学。
混沌学理论中的蝴蝶效应主要关注相关关系。它是指对初始条件敏感性的一种依赖现象,输入端微小的差别会迅速放大到输出端,但能输出什么,谁也不知道。
人类一旦放弃了对因果关系的追求,也就放弃了自身最优秀的品质:意志力。很多人不愿意相信算命是担心一旦知道了命运,就无法再去奋斗。即使我相信算命,也在探求相关关系中的因果要素。我放弃第一份工作的原因之一是厌倦了如此确定的明天:一个任务发出去,大概能预测到哪些环节会出问题,只要不去 follow,这些环节十有八九会出问题。
解析完这三大观点,下面是我对大数据理论的一些疑惑。大数据是目前风行的反馈经济中的重要一环,在金融、互联网行业的应用最为广泛,而这些行业都是大家所认为的高薪领域。很多时候我就在想,所谓无形的手所产生的趋势究竟是不是无形的。比如几家公司强推一个概念,说这是趋势,不久就真的变成趋势了。我们身边活生生的例子就是天猫的双十一和京东的618,一个巨头开路,无数人跟风,自然就生造出购物节,至于合理不合理,追究的意义也不大,因为很多事情是没有可比性的。这和没有强制控制中心的蜂群思维又不一样。
看完这本书,总是觉得作者说的过于绝对,也许是我的认识太浅了吧,所以最后用法演四戒做总结:
势不可以使尽,使尽则祸必至
福不可以受尽,受尽则缘必孤
话不可以说尽,说尽则人必易
规矩不可行尽,行尽则事必繁
;